Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
1.
Heart Fail Rev ; 29(3): 729-737, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38381277

RESUMO

Heart failure (HF) is a pervasive clinical challenge characterized by compromised cardiac function and reduced quality of life. The kinin-kallikrein system (KSS), a multifaceted peptide cascade, has garnered substantial attention due to its potential role in HF. Through activation of B1 and/or B2 receptors and downstream signaling, kinins modulate various physiological processes, including inflammation, coagulation, pain, blood pressure control, and vascular permeability. Notably, aberrations in KKS components have been linked to HF risk. The elevation of vasodilatory bradykinin (BK) due to kallikrein activity reduces preload and afterload, while concurrently fostering sodium reabsorption inhibition. However, kallikrein's conversion of prorenin to renin leads to angiotensinsII upregulation, resulting in vasoconstriction and fluid retention, alongside increased immune cell activity that fuels inflammation and cardiac remodeling. Importantly, prolonged KKS activation resulting from volume overload and tissue stretch contributes to cardiac collagen loss. The conventional renin-angiotensin-aldosterone system (RAAS) inhibitors used in HF management may inadvertently intensify KKS activity, exacerbating collagen depletion and cardiac remodeling. It is crucial to balance the KKS's role in acute cardiac damage, which may temporarily enhance function and metabolic parameters against its detrimental long-term effects. Thus, KKS blockade emerges as a promising strategy to impede HF progression. By attenuating the link between immune system function and tissue damage, KKS inhibition can potentially reduce cardiac remodeling and alleviate HF symptoms. However, the nuanced roles of BK in various acute conditions necessitate further investigation into the sustained benefits of kallikrein inhibitors in patients with chronic HF.


Assuntos
Insuficiência Cardíaca , Sistema Calicreína-Cinina , Calicreínas , Cininas , Sistema Renina-Angiotensina , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Sistema Calicreína-Cinina/fisiologia , Cininas/metabolismo , Calicreínas/metabolismo , Sistema Renina-Angiotensina/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais , Bradicinina/metabolismo
2.
J Hazard Mater ; 458: 132044, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451104

RESUMO

Atmospheric particulate matter (PM) perturbs hematological homeostasis by targeting the plasma kallikrein-kinin system (KKS), causing a cascade of zymogen activation events. However, the causative components involved in PM-induced hematological effects are largely unknown. Herein, the standard reference materials (SRMs) of atmospheric PM, including emissions from the diesel (2975), urban (1648a), and bituminous coal (2693), were screened for their effects on plasma KKS activation, and the effective constituent contributing to PM-induced KKS activation was further explored by fraction isolation and chemical analysis. The effects of three SRMs on KKS activation followed the order of 2975 > 1648a > 2693, wherein the fractions of 2975 isolated by acetone and water, together with the insoluble particulate residues, exerted significant perturbations in the hematological homeostasis. The soot contents in the SRMs and corresponding isolated fractions matched well with their hematological effects, and the KKS activation could be dependent on the soot surface oxidation degree. This study, for the first time, uncovered the soot content in atmospheric PM with different origins contributed to the distinct effects on plasma KKS activation. The finding would be of utmost importance for the health risk assessment on inhaled airborne fine PM, given its inevitable contact with human circulatory system.


Assuntos
Poluentes Atmosféricos , Sistema Calicreína-Cinina , Material Particulado , Humanos , Sistema Calicreína-Cinina/fisiologia , Fuligem , Poluentes Atmosféricos/análise
3.
Am J Physiol Cell Physiol ; 324(3): C741-C756, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745527

RESUMO

Vasoactive peptides often serve a multitude of functions aside from their direct effects on vasodynamics. This article will review the existing literature on two vasoactive peptides and their involvement in skin homeostasis: adiponectin and-as the main representative of the kallikrein-kinin system-bradykinin. Adiponectin is the most abundantly expressed adipokine in the human organism, where it is mainly localized in fat depots including subcutaneous adipose tissue, from where adiponectin can exert paracrine effects. The involvement of adiponectin in skin homeostasis is supported by a number of studies reporting the effects of adiponectin in isolated human keratinocytes, sebocytes, fibroblasts, melanocytes, and immune cells. Regarding skin pathology, the potential involvement of adiponectin in psoriasis, atopic dermatitis, scleroderma, keloid, and melanogenesis is discussed in this article. The kallikrein-kinin system is composed of a variety of enzymes and peptides, most of which have been identified to be expressed in the skin. This also includes the expression of bradykinin receptors on most skin cells. Bradykinin is one of the very few hormones that is targeted by treatment in routine clinical use in dermatology-in this case for the treatment of hereditary angioedema. The potential involvement of bradykinin in wound healing, psoriasis, and melanoma is further discussed in this article. This review concludes with a call for additional preclinical and clinical studies to further explore the therapeutic potential of adiponectin supplementation (for psoriasis, atopic dermatitis, wound healing, scleroderma, and keloid) or pharmacological interference with the kallikrein-kinin system (for wound healing, psoriasis, and melanoma).


Assuntos
Adiponectina , Bradicinina , Homeostase , Sistema Calicreína-Cinina , Dermatopatias , Fenômenos Fisiológicos da Pele , Adiponectina/fisiologia , Sistema Calicreína-Cinina/fisiologia , Bradicinina/fisiologia , Humanos , Dermatopatias/metabolismo
4.
Sci Rep ; 12(1): 14167, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986069

RESUMO

Heart transplantation remains the definitive treatment for end stage heart failure. Because availability is limited, risk stratification of candidates is crucial for optimizing both organ allocations and transplant outcomes. Here we utilize proteomics prior to transplant to identify new biomarkers that predict post-transplant survival in a multi-institutional cohort. Microvesicles were isolated from serum samples and underwent proteomic analysis using mass spectrometry. Monte Carlo cross-validation (MCCV) was used to predict survival after transplant incorporating select recipient pre-transplant clinical characteristics and serum microvesicle proteomic data. We identified six protein markers with prediction performance above AUROC of 0.6, including Prothrombin (F2), anti-plasmin (SERPINF2), Factor IX, carboxypeptidase 2 (CPB2), HGF activator (HGFAC) and low molecular weight kininogen (LK). No clinical characteristics demonstrated an AUROC > 0.6. Putative biological functions and pathways were assessed using gene set enrichment analysis (GSEA). Differential expression analysis identified enriched pathways prior to transplant that were associated with post-transplant survival including activation of platelets and the coagulation pathway prior to transplant. Specifically, upregulation of coagulation cascade components of the kallikrein-kinin system (KKS) and downregulation of kininogen prior to transplant were associated with survival after transplant. Further prospective studies are warranted to determine if alterations in the KKS contributes to overall post-transplant survival.


Assuntos
Transplante de Coração , Sistema Calicreína-Cinina , Coagulação Sanguínea , Transplante de Coração/efeitos adversos , Humanos , Sistema Calicreína-Cinina/fisiologia , Cininogênios/metabolismo , Proteômica
5.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163636

RESUMO

Mast cells (MCs) have relevant participation in inflammatory and vascular hyperpermeability events, responsible for the action of the kallikrein-kinin system (KKS), that affect patients inflicted by the severe form of COVID-19. Given a higher number of activated MCs present in COVID-19 patients and their association with vascular hyperpermeability events, we investigated the factors that lead to the activation and degranulation of these cells and their harmful effects on the alveolar septum environment provided by the action of its mediators. Therefore, the pyroptotic processes throughout caspase-1 (CASP-1) and alarmin interleukin-33 (IL-33) secretion were investigated, along with the immunoexpression of angiotensin-converting enzyme 2 (ACE2), bradykinin receptor B1 (B1R) and bradykinin receptor B2 (B2R) on post-mortem lung samples from 24 patients affected by COVID-19. The results were compared to 10 patients affected by H1N1pdm09 and 11 control patients. As a result of the inflammatory processes induced by SARS-CoV-2, the activation by immunoglobulin E (IgE) and degranulation of tryptase, as well as Toluidine Blue metachromatic (TB)-stained MCs of the interstitial and perivascular regions of the same groups were also counted. An increased immunoexpression of the tissue biomarkers CASP-1, IL-33, ACE2, B1R and B2R was observed in the alveolar septum of the COVID-19 patients, associated with a higher density of IgE+ MCs, tryptase+ MCs and TB-stained MCs, in addition to the presence of intra-alveolar edema. These findings suggest the direct correlation of MCs with vascular hyperpermeability, edema and diffuse alveolar damage (DAD) events that affect patients with a severe form of this disease. The role of KKS activation in events involving the exacerbated increase in vascular permeability and its direct link with the conditions that precede intra-alveolar edema, and the consequent DAD, is evidenced. Therapy with drugs that inhibit the activation/degranulation of MCs can prevent the worsening of the prognosis and provide a better outcome for the patient.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , Permeabilidade Capilar , Sistema Calicreína-Cinina/fisiologia , Pulmão/patologia , Mastócitos/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Autopsia , COVID-19/imunologia , COVID-19/virologia , Caspase 1/metabolismo , Feminino , Humanos , Interleucina-33/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Masculino , Mastócitos/metabolismo , Mastócitos/virologia , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade
6.
Mediators Inflamm ; 2022: 7423537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153624

RESUMO

The COVID-19 pandemic is rapidly spreading, and health care systems are being overwhelmed with the huge number of cases, with a good number of cases requiring intensive care. It has become imperative to develop safe and effective treatment strategies to improve survival. In this regard, understanding the pathogenesis of COVID-19 is highly important. Many hypotheses have been proposed, including the ACE/angiotensin-II/angiotensin receptor 1 pathway, the complement pathway, and the angiotensin-converting enzyme 2/mitochondrial assembly receptor (ACE2/MasR) pathway. SARS-CoV-2 binds to the ACE2 on the cell surface, downregulating the ACE2, and thus impairs the inactivation of bradykinin and des-Arg9-bradykinin. Bradykinin, a linear nonapeptide, is extensively distributed in plasma and different tissues. Kininogens in plasma and tissue are the main sources of the two vasoactive peptides called bradykinin and kallidin. However, the role of the dysregulated bradykinin pathway is less explored in the pathogenesis of COVID-19. Understanding the pathogenesis of COVID-19 is crucial for the development of new effective treatment approaches which interfere with these pathways. In this review, we have tried to explore the interaction between SARS-CoV-2, ACE2, bradykinin, and its metabolite des-Arg9-bradykinin in the pathogenesis of COVID-19.


Assuntos
Bradicinina/fisiologia , COVID-19/etiologia , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/fisiologia , Humanos , Sistema Calicreína-Cinina/fisiologia , Receptores da Bradicinina/fisiologia , Tratamento Farmacológico da COVID-19
7.
Nat Rev Immunol ; 22(7): 411-428, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34759348

RESUMO

During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin-angiotensin system, the complement system, and the closely linked kallikrein-kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences.


Assuntos
Proteínas do Sistema Complemento , Sistema Renina-Angiotensina , Trombose , COVID-19 , Humanos , Inflamação , Sistema Calicreína-Cinina/fisiologia
8.
Balkan Med J ; 38(2): 82-88, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33233873

RESUMO

This review aims to summarize the main pathophysiological events involved in the development of hereditary angioedema (OMIM#106100). Hereditary angioedema is a rare genetic disease inherited in an autosomal dominant manner and caused by a loss of control over the plasma contact system or kallikrein-kinin system, which results in unrestrained bradykinin generation or signaling. In patients with hereditary angioedema, BK binding to endothelial cells leads to recurrent episodes of swelling at subcutaneous or submucosal tissues that can be life threatening when affecting the upper respiratory tract. The disease can either present with hypocomplementemia owing to the presence of pathogenic variants in the gene encoding complement C1 inhibitor (hereditary angioedema with C1-inhibitor deficiency) or present with normocomplementemia and associate with elevated estrogen levels owing to gain-of-function variants in the genes encoding coagulation proteins involved in the kallikrein-kinin system (namely, coagulation FXII [FXII-associated hereditary angioedema], plasminogen [PLG-associated hereditary angioedema], and high-molecular-weight kininogen [KNG1-associated hereditary angioedema]). Moreover, in recent years, novel pathogenic variants have been described in the genes encoding angiopoietin 1 (ANGPT1-associated hereditary angioedema) and myoferlin (MYOF-associated hereditary angioedema), which further expand the pathophysiological picture of hereditary angioedema.


Assuntos
Angioedemas Hereditários/fisiopatologia , Sistema Calicreína-Cinina/fisiologia , Angioedemas Hereditários/enzimologia , Proteína Inibidora do Complemento C1/metabolismo , Humanos , Peptídeo Hidrolases/farmacocinética
9.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138181

RESUMO

The 1918 influenza killed approximately 50 million people in a few short years, and now, the world is facing another pandemic. In December 2019, a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an international outbreak of a respiratory illness termed coronavirus disease 2019 (COVID-19) and rapidly spread to cause the worst pandemic since 1918. Recent clinical reports highlight an atypical presentation of acute respiratory distress syndrome (ARDS) in COVID-19 patients characterized by severe hypoxemia, an imbalance of the renin-angiotensin system, an increase in thrombogenic processes, and a cytokine release storm. These processes not only exacerbate lung injury but can also promote pulmonary vascular remodeling and vasoconstriction, which are hallmarks of pulmonary hypertension (PH). PH is a complication of ARDS that has received little attention; thus, we hypothesize that PH in COVID-19-induced ARDS represents an important target for disease amelioration. The mechanisms that can promote PH following SARS-CoV-2 infection are described. In this review article, we outline emerging mechanisms of pulmonary vascular dysfunction and outline potential treatment options that have been clinically tested.


Assuntos
Lesão Pulmonar Aguda/patologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/patologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/patologia , Síndrome Respiratória Aguda Grave/patologia , Vasoconstrição/fisiologia , Betacoronavirus , COVID-19 , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/patologia , Sistema Calicreína-Cinina/fisiologia , Pandemias , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Vasoconstrição/efeitos dos fármacos
10.
Med Hypotheses ; 143: 109886, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32504925

RESUMO

Coronavirus disease 2019 (COVID-19) is an infectious disease with fast spreading all over the world caused by the SARS-CoV-2 virus which can culminate in a severe acute respiratory syndrome by the injury caused in the lungs. However, other organs can be also damaged. SARS-CoV-2 enter into the host cells using the angiotensin-converting enzyme 2 (ACE2) as receptor, like its ancestor SARS-CoV. ACE2 is then downregulated in lung tissues with augmented serum levels of ACE2 in SARS-CoV-2 patients. Interestingly, ACE2+ organs reveal the symptomatic repercussions, which are signals of the infection such as dry cough, shortness of breath, heart failure, liver and kidney damage, anosmia or hyposmia, and diarrhea. ACE2 exerts a chief role in the renin-angiotensin system (RAS) by converting angiotensin II to angiotensin-(1-7) that activates Mas receptor, inhibits ACE1, and modulates bradykinin (BK) receptor sensitivity, especially the BK type 2 receptor (BKB2R). ACE2 also hydrolizes des-Arg9-bradykinin (DABK), an active BK metabolite, agonist at BK type 1 receptors (BKB1R), which is upregulated by inflammation. In this opinion article, we conjecture a dialogue by the figure of Sérgio Ferreira which brought together basic science of classical pharmacology and clinical repercussions in COVID-19, then we propose that in the course of SARS-CoV-2 infection: i) downregulation of ACE2 impairs the angiotensin II and DABK inactivation; ii) BK and its metabolite DABK seems to be in elevated levels in tissues by interferences in kallikrein/kinin system; iii) BK1 receptor contributes to the outbreak and maintenance of the inflammatory response; iv) kallikrein/kinin system crosstalks to RAS and coagulation system, linking inflammation to thrombosis and organ injury. We hypothesize that targeting the kallikrein/kinin system and BKB1R pathway may be beneficial in SARS-CoV-2 infection, especially on early stages. This route of inference should be experimentally verified by SARS-CoV-2 infected mice.


Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/fisiopatologia , Sistema Calicreína-Cinina/fisiologia , Modelos Biológicos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/fisiopatologia , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Infecções por Coronavirus/etiologia , Humanos , Sistema Calicreína-Cinina/efeitos dos fármacos , Camundongos , Pandemias , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/etiologia , Receptores Virais/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Pesquisa Translacional Biomédica , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
11.
Int J Mol Sci ; 21(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397357

RESUMO

Recent studies have shown that the innate and adaptive immune system, together with low-grade inflammation, may play an important role in essential hypertension. In this work, to verify the importance of selected factors for the development of essential hypertension, we created a Petri net-based model and analyzed it. The analysis was based mainly on t-invariants, knockouts of selected fragments of the net and its simulations. The blockade of the renin-angiotensin (RAA) system revealed that the most significant effect on the emergence of essential hypertension has RAA activation. This blockade affects: (1) the formation of angiotensin II, (2) inflammatory process (by influencing C-reactive protein (CRP)), (3) the initiation of blood coagulation, (4) bradykinin generation via the kallikrein-kinin system, (5) activation of lymphocytes in hypertension, (6) the participation of TNF alpha in the activation of the acute phase response, and (7) activation of NADPH oxidase-a key enzyme of oxidative stress. On the other hand, we found that the blockade of the activation of the RAA system may not eliminate hypertension that can occur due to disturbances associated with the osmotically independent binding of Na in the interstitium. Moreover, we revealed that inflammation alone is not enough to trigger primary hypertension, but it can coexist with it. We believe that our research may contribute to a better understanding of the pathology of hypertension. It can help identify potential subprocesses, which blocking will allow better control of essential hypertension.


Assuntos
Hipertensão Essencial/fisiopatologia , Inflamação/fisiopatologia , Modelos Biológicos , Angiotensina II/fisiologia , Autoantígenos/imunologia , Coagulação Sanguínea , Bradicinina/biossíntese , Proteína C-Reativa/fisiologia , Endotélio Vascular/imunologia , Hipertensão Essencial/etiologia , Hipertensão Essencial/imunologia , Humanos , Inflamação/imunologia , Sistema Calicreína-Cinina/fisiologia , Ativação Linfocitária , NADPH Oxidases/fisiologia , Natriurese/fisiologia , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Pele/fisiopatologia , Sódio/metabolismo , Cloreto de Sódio na Dieta/farmacocinética , Fator de Necrose Tumoral alfa/fisiologia
12.
J Vasc Res ; 57(2): 97-105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31896109

RESUMO

OBJECTIVE: The purpose of this study was to investigate the clinical evolution of patients treated with carbon-coated stent, as well as its patency and the inflammatory response triggered by this process through the quantification of serum elements of the kallikrein-kinin system (KKS). METHODS: This was a single-center prospective study with 27 patients with peripheral artery disease (PAD) who required percutaneous transluminal angioplasty and stenting of the iliacofemoropopliteal segment using carbon-coated stent grafts (carbostents). The blood concentrations of the total and kininogen fractions were evaluated using immunoenzymatic methods. Plasma kallikrein levels were assessed by the colorimetric method and tissue kallikrein levels were evaluated by the spectrophotometric method. The activity of kininase II was measured by -fluorometric analysis. RESULTS: Of the 27 patients who completed the 6 months of the study (11 iliac territory, 16 femoropopliteal territory), only one experienced restenosis (3.7%) (femoropopliteal segment) and no patient had occlusion (96.3% of patency). In 1 year, four patients were lost to follow-up and all 23 patients evaluated maintained stent patency, except for the patient who had restenosis throughout the first 6 months. We report complete (100%) member salvage in 12 months of follow-up. The activity levels of high- and low-molecular-weight kininogens decreased significantly over time (before vs. 24 h, p < 0.01; before vs. 6 months, p < 0.001, and before vs. 24 h, p < 0.01; before vs. 6 months, p < 0.001; 24 h vs. 6 months, p < 0.001, respectively). Patients also had significantly lower levels of plasma and tissue kallikrein (before vs. 24 h, p < 0.001; before vs. 6 months, p < 0.001, and before vs. 24 h, p < 0.01; before vs. 6 months, p < 0.05, respectively). There was a significant increase in the enzymatic activity of kininase II at 24 h and after 6 months compared to the pre-treatment control (p < 0.001). CONCLUSION: Our early experience shows that the use of carbon-coated stents in PAD appears to be safe, with low rates of early restenosis (3.7% in the first 6 months and 5% in the 12 months of follow-up). We concluded that KKS was involved in the inflammatory response caused by the placement of carbon-coated stents.


Assuntos
Angioplastia/métodos , Sistema Calicreína-Cinina/fisiologia , Doença Arterial Periférica/terapia , Stents/efeitos adversos , Idoso , Carbono , Feminino , Humanos , Calicreínas/sangue , Cininogênio de Alto Peso Molecular/sangue , Masculino , Pessoa de Meia-Idade , Peptidil Dipeptidase A/metabolismo , Estudos Prospectivos
13.
Sci Rep ; 9(1): 19437, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857655

RESUMO

Pharmacological research in mice and human genetic analyses suggest that the kallikrein-kinin system (KKS) may regulate anxiety. We examined the role of the KKS in anxiety and stress in both species. In human genetic association analysis, variants in genes for the bradykinin precursor (KNG1) and the bradykinin receptors (BDKRB1 and BDKRB2) were associated with anxiety disorders (p < 0.05). In mice, however, neither acute nor chronic stress affected B1 receptor gene or protein expression, and B1 receptor antagonists had no effect on anxiety tests measuring approach-avoidance conflict. We thus focused on the B2 receptor and found that mice injected with the B2 antagonist WIN 64338 had lowered levels of a physiological anxiety measure, the stress-induced hyperthermia (SIH), vs controls. In the brown adipose tissue, a major thermoregulator, WIN 64338 increased expression of the mitochondrial regulator Pgc1a and the bradykinin precursor gene Kng2 was upregulated after cold stress. Our data suggests that the bradykinin system modulates a variety of stress responses through B2 receptor-mediated effects, but systemic antagonists of the B2 receptor were not anxiolytic in mice. Genetic variants in the bradykinin receptor genes may predispose to anxiety disorders in humans by affecting their function.


Assuntos
Transtornos de Ansiedade/metabolismo , Bradicinina/metabolismo , Sistema Calicreína-Cinina/fisiologia , Estresse Psicológico/metabolismo , Adulto , Animais , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/patologia , Antagonistas de Receptor B1 da Bradicinina/administração & dosagem , Antagonistas de Receptor B2 da Bradicinina/administração & dosagem , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Sistema Calicreína-Cinina/efeitos dos fármacos , Cininogênios/genética , Cininogênios/metabolismo , Masculino , Camundongos , Naftalenos/administração & dosagem , Compostos Organofosforados/administração & dosagem , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Polimorfismo de Nucleotídeo Único , Receptor B1 da Bradicinina/genética , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Especificidade da Espécie , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/patologia , Regulação para Cima
14.
J Neurochem ; 150(3): 296-311, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31206169

RESUMO

Temporal lobe epilepsy (TLE) is a chronic disease, characterized by severe and refractory seizures, triggered in the hippocampus and/or amygdala, disrupting the blood-brain barrier. This disruption can sustain, or aggravate, the epileptic condition. The aim of this study was to evaluate the activation of the kallikrein-kinin system in patients with TLE, as it relates to the maintenance of blood-brain barrier. Human hippocampal sclerotic tissues removed after surgery for seizure control, plasma, and serum were used in the following assays: immunostaining for white blood cells in the TLE hippocampus, C-reactive protein in serum, quantification of plasma kallikrein (PKal) and cathepsin B (CatB) activity in serum and plasma, quantification of C1-inhibitor, analysis of high-molecular-weight kininogen (H-kininogen) fragments, and activation of plasma prekallikrein for comparison with healthy controls. Infiltration of white blood cells in the sclerotic hippocampus and a significant increase in the neutrophil/lymphocyte ratio in the blood of TLE patients were observed. High levels of C-reactive protein (TLE = 1.4 ± 0.3 µg/mL), PKal (TLE = 5.4 ± 0.4 U/mL), and CatB (TLE = 4.9 ± 0.4 U/mL) were also evident in the serum of TLE patients comparing to controls. A strong linear correlation was observed between active CatB and PKal in the serum of TLE patients (r = 0.88). High levels of cleaved H-kininogen and free PKal, and low levels of C1-inhibitor (TLE = 188 ± 12 µg/mL) were observed in the serum of TLE patients. Our data demonstrated that the plasma kallikrein-kinin system is activated in patients with TLE. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Catepsina B/sangue , Epilepsia do Lobo Temporal/metabolismo , Inflamação/metabolismo , Sistema Calicreína-Cinina/fisiologia , Calicreínas/sangue , Adulto , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
15.
Thorax ; 74(4): 380-389, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30478197

RESUMO

BACKGROUND: Aberrant lipoprotein metabolism has been implicated in experimental pulmonary hypertension, but the relevance to patients with pulmonary arterial hypertension (PAH) is inconclusive. OBJECTIVE: To investigate the relationship between circulating lipoprotein subclasses and survival in patients with PAH. METHODS: Using nuclear magnetic resonance spectroscopy, 105 discrete lipoproteins were measured in plasma samples from two cohorts of patients with idiopathic or heritable PAH. Data from 1124 plasma proteins were used to identify proteins linked to lipoprotein subclasses. The physical presence of proteins was confirmed in plasma lipoprotein subfractions separated by ultracentrifugation. RESULTS: Plasma levels of three lipoproteins from the small high-density lipoprotein (HDL) subclass, termed HDL-4, were inversely related to survival in both the discovery (n=127) and validation (n=77) cohorts, independent of exercise capacity, comorbidities, treatment, N-terminal probrain natriuretic peptide, C reactive protein and the principal lipoprotein classes. The small HDL subclass rich in apolipoprotein A-2 content (HDL-4-Apo A-2) exhibited the most significant association with survival. None of the other lipoprotein classes, including principal lipoprotein classes HDL and low-density lipoprotein cholesterol, were prognostic. Three out of nine proteins identified to associate with HDL-4-Apo A-2 are involved in the regulation of fibrinolysis, namely, the plasmin regulator, alpha-2-antiplasmin, and two major components of the kallikrein-kinin pathway (coagulation factor XI and prekallikrein), and their physical presence in the HDL-4 subfraction was confirmed. CONCLUSION: Reduced plasma levels of small HDL particles transporting fibrinolytic proteins are associated with poor outcomes in patients with idiopathic and heritable PAH.


Assuntos
Hipertensão Pulmonar/sangue , Lipoproteínas HDL/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Fibrinólise/fisiologia , Hemodinâmica/fisiologia , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Sistema Calicreína-Cinina/fisiologia , Estimativa de Kaplan-Meier , Lipoproteínas/sangue , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Prognóstico , Proteoma
16.
FASEB J ; 33(2): 2599-2609, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30281335

RESUMO

Neutrophil recruitment and plasma exudation are key elements in the immune response to injury or infection. Activated neutrophils stimulate opening of the endothelial barrier; however, the underlying mechanisms have remained largely unknown. In this study, we identified a pivotal role of the proinflammatory kallikrein-kinin system and consequent formation of bradykinin in neutrophil-evoked vascular leak. In mouse and hamster models of acute inflammation, inhibitors of bradykinin generation, and signaling markedly reduced plasma exudation in response to chemoattractant activation of neutrophils. The neutrophil-driven leak was likewise suppressed in mice deficient in either the bradykinin B2 receptor or factor XII (initiator of the kallikrein-kinin system). In human endothelial cell monolayers, material secreted from activated neutrophils induced cytoskeletal rearrangement, leading to paracellular gap formation in a bradykinin-dependent manner. As a mechanistic basis, we found that a neutrophil-derived heparin-binding protein (HBP/azurocidin) displaced the bradykinin precursor high-molecular-weight kininogen from endothelial cells, thereby enabling proteolytic processing of kininogen into bradykinin by neutrophil and plasma proteases. These data provide novel insight into the signaling pathway by which neutrophils open up the endothelial barrier and identify the kallikrein-kinin system as a target for therapeutic interventions in acute inflammatory reactions.-Kenne, E., Rasmuson, J., Renné, T., Vieira, M. L., Müller-Esterl, W., Herwald, H., Lindbom, L. Neutrophils engage the kallikrein-kinin system to open up the endothelial barrier in acute inflammation.


Assuntos
Permeabilidade da Membrana Celular , Endotélio Vascular/fisiologia , Inflamação/patologia , Sistema Calicreína-Cinina/fisiologia , Neutrófilos/metabolismo , Edema Pulmonar/patologia , Animais , Bradicinina/metabolismo , Endotélio Vascular/citologia , Fator XII/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Cininogênio de Alto Peso Molecular/metabolismo , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Edema Pulmonar/etiologia , Edema Pulmonar/metabolismo
17.
JCI Insight ; 3(9)2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29720566

RESUMO

Kidney injury is a frequent outcome in patients with disseminated Candida albicans fungal infections. IL-17 receptor (IL-17R) signaling is critical for renal protection against disseminated candidiasis, but the identity and function of IL-17-responsive cells in mediating renal defense remains an active area of debate. Using BM chimeras, we found that IL-17R signaling is required only in nonhematopoietic cells for immunity to systemic C. albicans infection. Since renal tubular epithelial cells (RTEC) are highly responsive to IL-17 in vitro, we hypothesized that RTEC might be the dominant target of IL-17 activity in the infected kidney. We generated mice with a conditional deletion of IL-17 receptor A (Il17ra) in RTEC (Il17raΔRTEC). Strikingly, Il17raΔRTEC mice showed enhanced kidney damage and early mortality following systemic infection, very similar to Il17ra-/- animals. Increased susceptibility to candidiasis in Il17raΔRTEC mice was associated with diminished activation of the renal protective Kallikrein-kinin system (KKS), resulting in reduced apoptosis of kidney-resident cells during hyphal invasion. Moreover, protection was restored by treatment with bradykinin, the major end-product of KKS activation, which was mediated dominantly via bradykinin receptor b1. These data show that IL-17R signaling in RTEC is necessary and likely sufficient for IL-17-mediated renal defense against fatal systemic C. albicans infection.


Assuntos
Injúria Renal Aguda/imunologia , Candidemia/imunologia , Membrana Basal Glomerular/metabolismo , Receptores de Interleucina-17/imunologia , Receptores de Interleucina-17/metabolismo , Transdução de Sinais/imunologia , Injúria Renal Aguda/microbiologia , Transferência Adotiva , Animais , Bradicinina/farmacologia , Candida albicans , Células Epiteliais/metabolismo , Feminino , Predisposição Genética para Doença , Membrana Basal Glomerular/citologia , Sistema Calicreína-Cinina/efeitos dos fármacos , Sistema Calicreína-Cinina/fisiologia , Túbulos Renais/metabolismo , Masculino , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Interleucina-17/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
Prog Neurobiol ; 165-167: 26-50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29355711

RESUMO

Neurological disorders represent major health concerns in terms of comorbidity and mortality worldwide. Despite a tremendous increase in our understanding of the pathophysiological processes involved in disease progression and prevention, the accumulated knowledge so far resulted in relatively moderate translational benefits in terms of therapeutic interventions and enhanced clinical outcomes. Aiming at specific neural molecular pathways, different strategies have been geared to target the development and progression of such disorders. The kallikrein-kinin system (KKS) is among the most delineated candidate systems due to its ubiquitous roles mediating several of the pathophysiological features of these neurological disorders as well as being implicated in regulating various brain functions. Several experimental KKS models revealed that the inhibition or stimulation of the two receptors of the KKS system (B1R and B2R) can exhibit neuroprotective and/or adverse pathological outcomes. This updated review provides background details of the KKS components and their functions in different neurological disorders including temporal lobe epilepsy, traumatic brain injury, stroke, spinal cord injury, Alzheimer's disease, multiple sclerosis and glioma. Finally, this work will highlight the putative roles of the KKS components as potential neurotherapeutic targets and provide future perspectives on the possibility of translating these findings into potential clinical biomarkers in neurological disease.


Assuntos
Biomarcadores/metabolismo , Sistema Calicreína-Cinina/fisiologia , Cininas/metabolismo , Doenças do Sistema Nervoso/metabolismo , Receptores da Bradicinina/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
19.
Chemosphere ; 190: 191-200, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28987408

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are ubiquitous and high persistent in human blood, thus potentially inducing a myriad of deleterious consequences. Plasma kallikrein-kinin system (KKS), which physiologically regulates vascular permeability, is vulnerable to exogenous stimulators, like PFASs with long-chain alkyl backbone substituted by electronegative fluorine. The study on the interactions of PFASs with the KKS and the subsequent effects on vascular permeability would be helpful to illustrate how the chemicals penetrate the biological vascular barriers to reach different tissues. In present study, three representative PFASs, including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexadecanoic acid (PFHxDA), were investigated for their effects on the activation of the KKS, paracellular permeability in human retina endothelial cells (HRECs) and integrity of the adherens junctions. In contrast to either PFOS or PFOA, PFHxDA efficiently triggered KKS activation in a concentration-dependent manner based on protease activity assays. The plasma activated by PFHxDA significantly increased paracellular permeability of HRECs through the degradation of adherens junctions. As evidenced by the antagonistic effect of aprotinin, PFHxDA-involved effects on vascular permeability were mediated by KKS activation. The results herein firstly revealed the mechanistic pathway for PFHxDA induced effects on vascular endothelial cells. Regarding the possible structure-related activities of the chemicals, this finding would be of great help in the risk assessment of PFASs.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/metabolismo , Fluorocarbonos/farmacologia , Sistema Calicreína-Cinina/efeitos dos fármacos , Ácido Palmítico/farmacologia , Junções Aderentes/metabolismo , Ácidos Alcanossulfônicos/farmacologia , Caprilatos/farmacologia , Células Cultivadas , Células Endoteliais/fisiologia , Humanos , Sistema Calicreína-Cinina/fisiologia , Plasma/efeitos dos fármacos , Retina/citologia
20.
Exp Eye Res ; 166: 74-83, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28549900

RESUMO

This review offers a contemporary history of the renin-angiotensin (RAS) and kallikrein-kinin (KKS) systems with emphasis on how these complex systems affect the eye. It describes the types of communication (cross-talk) between the two systems and evaluates their potential role in the development of diabetic retinopathy, diabetic macular edema, age-related macular degeneration, glaucoma, and uveitis. In addition to detailing the important physiological actions of components of the RAS and KKS, possibilities are suggested for new therapeutic avenues in the treatment of common ocular diseases. Historical notes indicate the major events in this research area, marking four decades from the first publication on the discovery of renin and angiotensin converting enzyme in the eye to the present time.


Assuntos
Glaucoma/fisiopatologia , Sistema Calicreína-Cinina/fisiologia , Receptor Cross-Talk/fisiologia , Sistema Renina-Angiotensina/fisiologia , Doenças Retinianas/fisiopatologia , Uveíte/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...